Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(7): 2408-2414, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38329291

RESUMEN

Two-dimensional (2D) heterostructures with ferromagnetism and ferroelectricity provide a promising avenue to miniaturize the device size, increase computational power, and reduce energy consumption. However, the direct synthesis of such eye-catching heterostructures has yet to be realized up to now. Here, we design a two-step chemical vapor deposition strategy to growth of Cr2S3/WS2 vertical heterostructures with atomically sharp and clean interfaces on sapphire. The interlayer charge transfer and periodic moiré superlattice result in the emergence of room-temperature ferroelectricity in atomically thin Cr2S3/WS2 vertical heterostructures. In parallel, long-range ferromagnetic order is discovered in 2D Cr2S3 via the magneto-optical Kerr effect technique with the Curie temperature approaching 170 K. The charge distribution variation induced by the moiré superlattice changes the ferromagnetic coupling strength and enhances the Curie temperature. The coexistence of ferroelectricity and ferromagnetism in 2D Cr2S3/WS2 vertical heterostructures provides a cornerstone for the further design of logic-in-memory devices to build new computing architectures.

2.
Nat Commun ; 15(1): 721, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267426

RESUMEN

Multiferroic materials offer a promising avenue for manipulating digital information by leveraging the cross-coupling between ferroelectric and ferromagnetic orders. Despite the ferroelectricity has been uncovered by ion displacement or interlayer-sliding, one-unit-cell of multiferroic materials design and wafer-scale synthesis have yet to be realized. Here we develope an interface modulated strategy to grow 1-inch one-unit-cell of non-layered chromium sulfide with unidirectional orientation on industry-compatible c-plane sapphire. The interfacial interaction between chromium sulfide and substrate induces the intralayer-sliding of self-intercalated chromium atoms and breaks the space reversal symmetry. As a result, robust room-temperature ferroelectricity (retaining more than one month) emerges in one-unit-cell of chromium sulfide with ultrahigh remanent polarization. Besides, long-range ferromagnetic order is discovered with the Curie temperature approaching 200 K, almost two times higher than that of bulk counterpart. In parallel, the magnetoelectric coupling is certified and which makes 1-inch one-unit-cell of chromium sulfide the largest and thinnest multiferroics.

3.
Adv Mater ; 35(36): e2211690, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37276613

RESUMEN

2D transition metal dichalcogenides (TMDCs) and single-atom catalysts (SACs) are promising electrodes for energy conversion/storage because of the layered structure and maximum atom utilization efficiency. However, the integration of such two type materials and the relevant sodium storage applications remain daunting challenges. Here, an ingenious diatomite-templated synthetic strategy is designed to fabricate single-atom cobalt-doped MoS2 /carbon (SA Co-MoS2 /C) composites toward the high-performance sodium storage. Benefiting from the unique hierarchical structure, high electron/sodium-ion conductivity, and abundant active sites, the obtained SA Co-MoS2 /C reveals remarkable specific capacity (≈604.0 mAh g-1 at 0.1 A g-1 ), high rate performance, and outstanding long cyclic stability. Particularly, the sodium-ion full cell composed of SA Co-MoS2 /C anode and Na3 V2 (PO4 )3 cathode demonstrates unexpected stability with the cycle number exceeded 1200. The internal sodium storage mechanism is clarified with the aid of density functional theory calculations and in situ experimental characterizations. This work not only represents a substantial leap in terms of synthesizing SACs on 2D TMDCs but also provides a crucial step toward the practical sodium-ion battery applications.

4.
Small ; 19(38): e2302029, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37194986

RESUMEN

Sodium-ion batteries (SIBs) have received increasing attention because of their appealing cell voltages and cost-effective features. However, the atom aggregation and electrode volume variation inevitably deteriorate the sodium storage kinetics. Here a new strategy is proposed to boost the lifetime of SIB by synthesizing sea urchin-like FeSe2 /nitrogen-doped carbon (FeSe2 /NC) composites. The robust FeN coordination hinders the Fe atom aggregation and accommodates the volume expansion, while the unique biomorphic morphology and high conductivity of FeSe2 /NC enhance the intercalation/deintercalation kinetics and shorten the ion/electron diffusion length. As expected, FeSe2 /NC electrodes deliver excellent half (387.6 mAh g-1 at 20.0 A g-1 after 56 000 cycles) and full (203.5 mAh g-1 at 1.0 A g-1 after 1200 cycles) cell performances. Impressively, an ultralong lifetime of SIB composed of FeSe2 /Fe3 Se4 /NC anode is uncovered with the cycle number exceeding 65 000. The sodium storage mechanism is clarified with the aid of density function theory calculations and in situ characterizations. This work hereby provides a new paradigm for enhancing the lifetime of SIB by constructing a unique coordination environment between active material and framework.

5.
Adv Mater ; 35(23): e2211536, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36929175

RESUMEN

Epitaxial growth and controllable doping of wafer-scale atomically thin semiconductor single crystals are two central tasks to tackle the scaling challenge of transistors. Despite considerable efforts are devoted, addressing such crucial issues simultaneously under 2D confinement is yet to be realized. Here, an ingenious strategy to synthesize record-breaking 4 in. length Fe-doped transition-metal dichalcogenides (TMDCs) single crystals on industry-compatible c-plane sapphire without special miscut angle is designed. Atomically thin transistors with high electron mobility (≈146 cm2 V-1 s-1 ) and remarkable on/off current ratio (≈109 ) are fabricated based on 4 in. length Fe-MoS2 single crystals, due to the ultralow contact resistance (≈489 Ω µm). In-depth characterizations and theoretical calculations reveal that the introduction of Fe significantly decreases the formation energy of parallel steps on sapphire surfaces and contributes to the edge-nucleation of unidirectional alignment TMDCs domains (>99%). This work represents a substantial leap in terms of bridging synthesis and doping of wafer-scale 2D semiconductor single crystals, which should promote the further device downscaling and extension of Moore's law.

6.
Nano Lett ; 23(5): 1758-1766, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36790274

RESUMEN

Two-dimensional (2D) nanosheet arrays with unidirectional orientations are of great significance for synthesizing wafer-scale single crystals. Although great efforts have been devoted, the growth of atomically thin magnetic nanosheet arrays and single crystals is still unaddressed. Here we design an interisland-distance-mediated chemical vapor deposition strategy to synthesize centimeter-scale atomically thin Fe3O4 arrays with unidirectional orientations on mica. The unidirectional alignment of nearly all the Fe3O4 nanosheets is driven by a dual-coupling-guided growth mechanism. The Fe3O4/mica interlayer interaction induces two preferred antiparallel orientations, whereas the interisland interaction of Fe3O4 breaks the energy degeneracy of antiparallel orientations. The room-temperature long-range ferrimagnetic order and thickness-tunable magnetic domain evolution are uncovered in atomically thin Fe3O4. This strategy to tune the orientations of nanosheets through the an interisland interaction can guide the synthesis of other 2D transition-metal oxides, thereby laying a solid foundation for future spintronic device applications at the integration level.

7.
Adv Sci (Weinh) ; 10(2): e2204671, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36398606

RESUMEN

Tin selenide (SnSe2 ) is considered a promising anode of the lithium-ion battery because of its tunable interlayer space, abundant active sites, and high theoretical capacity. However, the low electronic conductivity and large volume variation during the charging/discharging processes inevitably result in inadequate specific capacity and inferior cyclic stability. Herein, a high-throughput wet chemical method to synthesize SnSe2 /SnSe heterostructures is designed and used as anodes of lithium-ion batteries. The hierarchical nanoflower morphology of such heterostructures buffers the volume expansion, while the built-in electric field and metallic feature increase the charge transport capability. As expected, the superb specific capacity (≈911.4 mAh g-1 at 0.1 A g-1 ), high-rate performance, and outstanding cyclic stability are obtained in the lithium-ion batteries composed of SnSe2 /SnSe anodes. More intriguingly, a reversible specific capacity (≈374.7 mAh g-1 at 2.5 A g-1 ) is maintained after 1000 cycles. The internal lithium storage mechanism is clarified by density functional theory (DFT) calculations and in situ characterizations. This work hereby provides a new paradigm for enhancing lithium-ion battery performances by constructing heterostructures.

8.
Adv Mater ; 35(7): e2209465, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36460029

RESUMEN

2D multiferroics with magnetoelectric coupling combine the magnetic order and electric polarization in a single phase, providing a cornerstone for constructing high-density information storages and low-energy-consumption spintronic devices. The strong interactions between various order parameters are crucial for realizing such multifunctional applications, nevertheless, this criterion is rarely met in classical 2D materials at room-temperature. Here an ingenious space-confined chemical vapor deposition strategy is designed to synthesize atomically thin non-layered ε-Fe2 O3 single crystals and disclose the room-temperature long-range ferrimagnetic order. Interestingly, the strong ferroelectricity and its switching behavior are unambiguously discovered in atomically thin ε-Fe2 O3 , accompanied with an anomalous thickness-dependent coercive voltage. More significantly, the robust room-temperature magnetoelectric coupling is uncovered by controlling the magnetism with electric field and verifies the multiferroic feature of atomically thin ε-Fe2 O3 . This work not only represents a substantial leap in terms of the controllable synthesis of 2D multiferroics with robust magnetoelectric coupling, but also provides a crucial step toward the practical applications in low-energy-consumption electric-writing/magnetic-reading devices.

9.
Nat Commun ; 13(1): 6130, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36253483

RESUMEN

Two-dimensional multiferroic materials have garnered broad interests attributed to their magnetoelectric properties and multifunctional applications. Multiferroic heterostructures have been realized, nevertheless, the direct coupling between ferroelectric and ferromagnetic order in a single material still remains challenging, especially for two-dimensional materials. Here, we develop a physical vapor deposition approach to synthesize two-dimensional p-doped SnSe. The local phase segregation of SnSe2 microdomains and accompanying interfacial charge transfer results in the emergence of degenerate semiconductor and metallic feature in SnSe. Intriguingly, the room-temperature ferrimagnetism has been demonstrated in two-dimensional p-doped SnSe with the Curie temperature approaching to ~337 K. Meanwhile, the ferroelectricity is maintained even under the depolarizing field introduced by SnSe2. The coexistence of ferrimagnetism and ferroelectricity in two-dimensional p-doped SnSe verifies its multiferroic feature. This work presents a significant advance for exploring the magnetoelectric coupling in two-dimensional limit and constructing high-performance logic devices to extend Moore's law.

10.
ACS Nano ; 16(5): 8301-8308, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35467830

RESUMEN

Two-dimensional (2D) iron chalcogenides (FeX, X = S, Se, Te) are emerging as an appealing class of materials for a wide range of research topics, including electronics, spintronics, and catalysis. However, the controlled syntheses and intrinsic property explorations of such fascinating materials still remain daunting challenges, especially for 2D nonlayered Fe7S8 with mixed-valence states and high conductivity. Herein, we design a general and temperature-mediated chemical vapor deposition (CVD) approach to synthesize ultrathin and large-domain Fe7S8 nanosheets on mica substrates, with the thickness down to ∼4.4 nm (2 unit-cell). Significantly, we uncover a quadratic-dependent unsaturated magnetoresistance (MR) with out-of-plane anisotropy in 2D Fe7S8, thanks to its ultrahigh crystalline quality and high conductivity (∼2.7 × 105 S m-1 at room temperature and ∼1.7 × 106 S m-1 at 2 K). More interestingly, the CVD-synthesized 2D Fe7S8 nanosheets maintain robust environmental stability for more than 8 months. These results hereby lay solid foundations for synthesizing 2D nonlayered iron chalcogenides with mixed-valence states and exploring fascinating quantum phenomena.

11.
Adv Mater ; 34(18): e2200885, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35257429

RESUMEN

2D semiconductors are emerging as plausible candidates for next-generation "More-than-Moore" nanoelectronics to tackle the scaling challenge of transistors. Wafer-scale 2D semiconductors, such as MoS2 and WS2 , have been successfully synthesized recently; nevertheless, the absence of effective doping technology fundamentally results in energy barriers and high contact resistances at the metal-semiconductor interfaces, and thus restrict their practical applications. Herein, a controllable doping strategy in centimeter-sized monolayer MoS2 films is developed to address this critical issue and boost the device performance. The ultralow contact resistance and perfect Ohmic contact with metal electrodes are uncovered in monolayer Fe-doped MoS2 , which deliver excellent device performance featured with ultrahigh electron mobility and outstanding on/off current ratio. Impurity scattering is suppressed significantly thanks to the ultralow electron effective mass and appropriate doping site. Particularly, unidirectionally aligned monolayer Fe-doped MoS2 domains are prepared on 2 in. commercial c-plane sapphire, suggesting the feasibility of synthesizing wafer-scale 2D single-crystal semiconductors with outstanding device performance. This work presents the potential of high-performance monolayer transistors and enables further device downscaling and extension of Moore's law.

12.
Materials (Basel) ; 8(7): 4249-4257, 2015 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-28793437

RESUMEN

Inspired by the high adhesiveness of the electrospun fiber, we propose a method to fabricate multi-scale heterogeneous hump-on-string fiber via the adsorption of nanoparticles, the NPCTi which is the hydrolysate of titanium tetrachloride (TiCl4) and the nanoparticles containing Al (NPCAl) which is produced by the hydrolysis of Trimethylaluminium (TMA, Al(CH3)3). The water collection efficiency of the fibers can be easily controlled via changing not only the size of the beads but also the ratio of the Ti and Al. In addition, we introduce a computational fluid dynamics (CFD) simulation to show the pressure distribution of on the surface of the fibers, which gives another explanation regarding the high water collection efficiency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...